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Abstract

A new class of digital halftoning algorithms is introduce
Anti-correlation digital halftoning (ACDH) combines th
idea of a well-known game, Russian roulette, with the s
tistical approach to bilevel quantization of images. A re
resentative of the class, serpentine anti-correlation d
tal halftoning, is described and compared to error dif
sion, ordered dither, and other important digital halfton
algorithms. Digital halftoning means image quantizati
by algorithms that exploit properties of the vision syste
to create the illusion of continuous tone. Common pro
lems often accompanying digital halftoning include co
touring, correlated artifacts, edge enhancement, and
pleasant boundary effects. Serpentine ACDH causes fe
unwanted correlated artifacts and less contouring than
benchmark algorithms. Two intensity distortion criter
similar to those applied earlier to evaluate quality of no
uniform sampling are used to demonstrate that serpen
ACDH represents the average intensity remarkably w
Unlike popular algorithms based on error diffusion, s
pentine ACDH does not enhance edges. A simple pre
cessing technique allows one to introduce edge enha
ment if desired, while keeping it more isotropic than th
of error diffusion. Serpentine ACDH does not cause s
nificant boundary effects.

1. Introduction

Inherent limitations of devices for image visualization a
printing often require quantization of two-dimensional d
ital images to a limited number of grayscale levels. T
case of bilevel quantization is of particular interest wh
an image is to be printed on a printer that can only prod
black-and-white pictures.Digital halftoning [31] means
image quantization by algorithms that exploit properties
the vision system to create the illusion of continuous to
Digital halftoning algorithms have been applied in digi
holography [28], medical imaging [25], pattern recog
tion [16], and many other areas (see references in [1
32
.

a-
-

gi-
u-
g
n
m
b-
-

un-
er

the
a
n-
ine
ll.
r-
ro-
ce-
t

g-

d
-
e
n
ce

of
e.
l
i-
]).

We will be dealing with rectangular input and output dig
ital images consisting of pixels on a common square gr
Other cases are considered elsewhere [30, 31, 34]. Let
input of a digital halftoning algorithm be a two-dimension
al digital grayscale imageG represented by anN1 � N2

matrix of real valuesgi;j 2 [0; 1]. In bilevel quantization,
a binary imageB represented by anN1 � N2 matrix of
bi;j 2 f0; 1g serves as output of the algorithm. The sym
bolsgi;j andbi;j stand forintensitiesof pixels on the grid,
wherei = 0; 1; : : : ; N1 � 1 and j = 0; 1; : : : ; N2 � 1
respectively indicate line and column of a pixel. An in
tensity value0 means “black”,1 means “white”. To deter-
mine howG should be reproduced, proper meanings mu
be assigned to the intensity values in(0; 1). This task can
be accomplished as described in [15]. Bayer [4] popula
ized a class of digital halftoning algorithms calledordered
dither. Figures 1 (a) and 2 (a) feature two test image repr
sentations obtained by ordered dither with an8� 8 dither
matrix from [19]. Such dither matrices can be produce
by the method ofrecursive tesselation[32]. The images
are printed at the resolution of300 dots per inch (dpi).
Among the modifications of ordered dither, a prominen
place belongs to Ulichney’svoid-and-clustermethod [33]
involving special dither matrices calledblue noise masks
[22]. The method is based on the concept ofblue noise
[31]. Images in Figures 1 (b) and 2 (b) were obtaine
by ordered dither with a128 � 128 blue noise mask gen-
erated using the void-and-cluster method. The metho
internal parameter� = 1:5. Error diffusion (ED) [12]
is another important class of digital halftoning algorithms
The error diffusion algorithms employ matrices ofweights,
or error diffusion coefficients, and are sometimes classi-
fied by the number of non-zero weights. Ulichney [31
studiederror diffusion on a serpentine raster, akaserpen-
tine error diffusion (SED). Sandler et al. [25] explained
the advantage of SED and decribed a relatively fast thre
weight version of SED. This version was used to produ
the images shown in Figures 1 (c) and 2 (c). A numb
of slower algorithms based on ED achieve comparable
lower image quality, see [15].Hybrid algorithmsfor dig-
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ital halftoning have been studied by many researchers,
cluding Knuth [19], Eschbach [9], and Sandler et al. [25
Eschbach [9] combined error diffusion with another dig
tal halftoning technique,pulse-density modulation (PDM),
first proposed in [10]. Halftone images produced by t
resulting hybrid algorithm can be seen in Figures 1 (d) a
2 (d). The areas where1=4 < gi;j < 3=4 were treated by
the classical Floyd–Steinberg ED algorithm [13], and t
rest of the image was subjected to PDM. Eschbach reco
mended use of ED to process regions touching the ar
with 1=4 < gi;j < 3=4 as well, in order to break up the
seams seen at the switching points. However, this cau
highly visible patches to emerge in very light and ve
dark areas adjoining such points. Several so-calleditera-
tive algorithmsfor digital halftoning were studied, includ-
ing those based oniterative convolution[35, 36]. Figures 1
(e) and 2 (e) represent test images halftoned by the itera
convolution algorithm from [35] (30 iterations; internal pa-
rameters� = 0:29, � = 0:005, anda = 0:4). Other digital
halftoning algorithms employ such techniques as patte
ing [24] (it is also known as pulse-surface-area modu
tion, or PSAM [31]), hill climbing and simulated annea
ing [2, 7], look-up-table based halftoning [21], etc. (Se
[15] for a more comprehensive review.)

Following a brief discussion of the halftone image qu
ity issues, I will introduce a new class of digital halftonin
algorithms in Section 2.

2. Anti-Correlation Digital Halftoning

In halftone images, artificial contours may sometimes a
pear in the areas with slowly varying [31] or constant [2
input intensity. This effect is calledcontouring[31]. Cor-
related artifacts[31] present another problem, common fo
the algorithms that do not generate regular periodic p
terns. On the other hand, presence of highly visible reg
lar periodic patterns usually means poor rendition of sm
details of the image. Byaverage intensityof an area of a
digital image we mean the ratio of the sum of pixel inte
sities for this area and the overall number of pixels in it.
digital halftoning,edge enhancement (EE)is characterized
by the average intensity being below the input intensity
the dark side of the edge and above it on the light side
the edge. We will discuss EE in more detail in Section
Error diffusion is often accompanied by unpleasanttran-
sient boundary effects.

No single technique of image quality evaluation h
gained universal acceptance [8]. A review of the tec
niques can be found in [15]. Sandler et al. [25] propos
to interpret outputsbi;j of a digital halftoning algorithm
as values of random variables�i;j . (Ulichney [31] did it
earlier for the case of constant level input.) Using this i
terpretation, Sandler et al. developed the followinglocal
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quasi-optimality criterion. Let S be an area of the im-
age, consisting of pixels that are close together (no ex
measure of “closeness” specified), and letT (S) be the set
of all possible two-element subsetsf(i1; j1); (i2; j2)g of
S. Let the covariance of�i1;j1 and�i2;j2 be denoted by
cov(�i1;j1 ; �i2;j2). Sandler et al. postulated that it is desi
able to construct�i;j so that the variance

V

 X
S

�i;j

!
=
X
S

V (�i;j) + 2
X
T (S)

cov(�i1;j1 ; �i2;j2)

is minimum on the condition that the expected value
E(�i;j) = gi;j for all (i; j) in S. The authors of the cri-
terion pointed out that the underlying assumption that t
vision system averages intensity levels of pixels inS with
equal weights is just an approximation. They sugges
that, “the closer together any two pixels are, the less c
related the corresponding random variables should be
the condition that their expected values coincide with t
inputs).” Radial anisotropy of the vision system measur
by Campbell et al. [6] can be accounted for by pickin
a measure of closeness based on non-Euclidean dista
For any given pair of pixels, significance of correlation b
tween the random variables depends on the viewing c
ditions. The approach of Sandler et al. fits the results
psychovisual experiments conducted by Burgess et al.
and Myers et al. [23]. According to these results, the h
man observer is strongly influenced by correlated noi
and the detection performance for even a simple task
degraded substantially in its presence.

Russian rouletteis a well-known game consisting of
spinning the cylinder of a revolver loaded with one ca
tridge, pointing the muzzle at one’s own head, and pulli
the trigger. An early version of Russian roulette was d
scribed by Lermontov [20] in 1839. Due to unavailabi
ity of actual revolvers, the number of cylinder chambersn
was1, but the probability} that a shot is fired successfully
if a cartridge is aligned with the barrel when the trigge
is pulled was below1. In our model,} is taken to be1,
and the number of loaded cartridges~g is allowed to range
between0 andn. The case of multiple players is consid
ered. We assign numbers0; 1; : : : ; n � 1 to the chambers
of each revolver cylinder counterclockwise (looking at th
muzzle). Consider white-blooded players on anN1 �N2

square grid superimposed over a rectangular part of a
ometric plane covered with black snow. Whenever a sh
is fired, the corresponding player’s blood produces a wh
pixel. LetCi;j indicate the revolver cylinder of a player a
the position(i; j), and let

Ci;j [k] =

8<
:

1 if the kth chamber ofCi;j contains
a cartridge,

0 otherwise,

for k = 0; 1; : : : ; n� 1.
8
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Anti-correlation digital halftoning (ACDH)is a new
class of digital halftoning algorithms. It is based on ge
eralized Russian roulette, and multiple “gaps” consist
of empty chambers are allowed in the revolver cylinde
(Error diffusion can be simulated by a version of gener
ized Russian roulette such that at most one gap is allo
to remain in each loaded revolver cylinder, see my tech
cal report [15] for the details.) The control over correlati
between the random variables forming the unordered p
f�i;j ; �i�(`�1)+�1;j�(`�1)+�2g is achieved by using input
dependentanti-correlation filtersK = (k�1;�2). Other
techniques incorporated in ACDH areboundary random-
ization (BR)and theaverage intensity control (AIC). The
AIC mechanism helps to keep the average intensity of
part of the halftone image already computed closer to
average intensity of the corresponding part of the input
age. This is achieved by using theglobal histogram of the
cartridge distributionH, an array of

Hk =
X
i;j

Ci;j [k];

k = 0; 1; : : : ; n � 1. Local weighted histograms of th
cartridge distributionH(i; j) are arrays of

Hk(i; j) =
X
�1�0;
�2�0

k�1;�2Ci�(`K�1)+�1;j�(`K�1)+�2 [k];

where`K > 0 is a constant integer associated with t
local anti-correlation filterK. LetS(H(i; j)) be a permu-
tation off0; 1; : : : ; n� 1g such that

HS0(H(i;j))(i; j) � HS1(H(i;j))(i; j) � � � �

� HSn�1(H(i;j))(i; j);

and
HSx(H(i;j))(i; j) � HSy(H(i;j))(i; j)

wheneverx < y andHSx(H(i;j)) = HSy(H(i;j)). If more
than one permutation satifies these conditions,S(H(i; j))
is selected among the eligible permutations at random.
second of the conditions above is responsible for the A
Let ~S(H(i; j); ~gi;j), anequivalent ofS(H(i; j)) with re-
spect to~gi;j ; be defined as a permutation ofS(H(i; j))
such that the elements offS0(H(i; j));S1(H(i; j)); : : : ;
S~gi;j�1(H(i; j))g and fS~gi;j (H(i; j));S~gi;j+1(H(i; j));
: : : ;Sn�1(H(i; j))g are permuted independentl
~S(H(i; j); ~gi;j) can often be computed faster tha
S(H(i; j)). Let C(m) be theconfiguration(state of the
revolver cylinders) after themth iteration, and letC(0) be
some starting configuration. Each iteration involves p
cessing all pixels in some order, which may depend onm
andG.

Let rand(n1::n2) denote a function returning a ran
dom integer uniformly distributed onfn1; n1+1; : : : ; n2g,
329
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wheren1 � n2, and letint(x) be a function that takes a
real numberx, and returns an integer obtained by som
rounding operation.Sequential iterative anti-correlation
digital halftoning (SIACDH)is a subclass of ACDH de-
fined algorithmically as follows.

r  rand(0::n� 1);m 1; setC(0); initializeH;
while the last iteration is not over
f =� Process all pixels! �=

for i0 from 0 to N1N2 � 1 do
f

compute pixel coordinates(i; j) depending
on i0, m, andG;
~gi;j  int(gi;jn);
selectK (it may depend oni; j;m; andG);
computeH(i; j);
=� BR: All Ci;j [k] outside
the image are random �=

compute~S(H(i; j); ~gi;j);
=� change the state of Ci;j : �=
for k from 0 to n� 1 do
f
k0  ~Sk(H(i; j); ~gi;j);
if k < ~gi;j thenCi;j [k0] 1;

elseCi;j [k0] 0;
updateHk0 ;

g
g

m m+ 1; =� current Ci;j for all
(i; j) form C(m) �=

g
=� Pull the triggers: �=
for i from 0 to N1 � 1 do

for j from 0 to N2 � 1 do
bi;j  Ci;j [r];

The outputsbi;j can be interpreted as values of the corre
sponding random variables�i;j with the expected values
E(�i;j) =

~gi;j
n
� gi;j :

Serpentine anti-correlation digital halftoning (SACDH
processes pixels on a serpentine raster, using wedge-sh
input-dependent anti-correlation filters. The starting co
figurationC(0) corresponds to all revolver cylinders be
ing empty. SACDH is a representative of SIACDH, bu
only one iteration is performed. In my versions of SACDH
(n = 255 andn = 192 were tried), BR is performed by
taking the valuesCi;j [k] for (i; j) outside the image to be

Ci;j [k] =

�
1 if rBR < n�,
0 otherwise,

where� = j~gi;j � n=2j=n; andrBR is a value of a ran-
dom variable uniformly distributed onf0; 1; : : : ; dn=2eg
and computed independently whenever an attempt is ma
to look up the value ofCi;j [k] for (i; j) outside the image.
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Filter selection for my versions of SACDH is described
Appendix A of [15]. The asymmetry of the filters compen
sates for the asymmetry of sequential processing. (Paral-
lel iterative ACDH is also described in [15].) Figures 1
(f) and 2 (f) show halftone images produced by SACD
(n = 255). When examined visually, the gray scale ram
for n = 192 did not differ significantly from those for
n = 255. When the pixel at the position(i; j) is being pro-
cessed by SACDH, the values of the coefficientsk�1;�2 of
the local anti-correlation filterK signify how strongly we
want�i;j and�i�(`K�1)+�1;j�(1�2(i mod 2))((`K�1)��2) to
be anti-correlated. While strict conditions have to be im
posed on error diffusion coefficients to ensure numeri
stability [3], making sure that the computation of the hi
togram entries never causes an overflow is enough to a
eve stability when designing anti-correlation filters. A
a result, it is relatively simple to break up any unwant
regular binary pattern or correlated artifact by adjusti
K. Alas, other unwanted textures often emerge inste
so I had to perform multiple “trial-and-error” cycles sim
ilar to those described in [1]. I tried to eliminate all per
odic patterns that either seemed obnoxious by themsel
or caused contouring at 72 dpi, 100 dpi, or 300 dpi.
particular, my versions of SACDH suppress contourin
“worms” and fishbone-like artifacts neargi;j = 1=2 at the
cost of increased granularity in that area, which is loca
away from the middle of the gray scale ramps due to t
tone scale adjustment[31]. The less visible diagonal cor
related artifacts are favored over those oriented vertica
or horizontally. Very light and very dark areas look nice.

3. Average Intensity Representation,
Boundary Effects, and Edge Enhancement

To study how well average intensities are preserved
different digital halftoning algorithms, I computed globa
intensity distortionM =

PN�1
i=0

PN�1
j=0 ei;j for N � N

halftone images representing the input images such
gi;j = g for all i = 0; 1; : : : ; N � 1, j = 0; 1; : : : ; N � 1.
Computations were performed forN = 16; 32; 48; : : : ;
464, g = 1=64; 2=64; : : : ; 63=64. (Zeremba [37] and Shir-
ley [29] developed similar criteria to evaluate quality o
non-uniform sampling.) Intensity distortion for an area
a halftone image is the difference between the actual nu
ber of white pixels in the area and the number of wh
pixels needed to preserve the average intensity. The
ter may be non-integer. In my study, I chose the sets
possible valuesg andN so that this was never the cas
for the whole image. For SACDH,n was set to192 to
avoid rounding.Intensity distortion per pixeld = M=N2

was also computed and studied for some of the algorith
The intensity distortion figures for SACDH turned out t
be approximately 6 times lower than those for both voi
330
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and-cluster and an SED algorithm with a special kind
BR designed to remove a distortion component linear inN
andjg � 1=2j, which was approximately 3 times stronge
yet. The intensity distortion caused by rounding is spre
over the whole image, hence no extra boundary effects.

Presence of quantization noise decreases contrast
sitivity, and edge enhancement is widely believed to
needed to compensate for that. However, EE is unwan
when a digital halftoning algorithm is applied in digita
holography [11]. EE may also cause some of the optic
illusions discussed in [14]. Knox [17] showed by mea
surement that an inherent mechanism for asymmetric
was built into the classical Floyd–Steinberg ED. In a lat
paper [18], he provided a partial explanation of the ph
nomenon and demonstrated that the inherent EE was e
stronger in another ED algorithm, yet could not be detect
in the halftone images produced using line-by-linedelta-
sigma modulation (DSM). Sandler et al. [26] provide a few
references on DSM. From their results, it follows that,
line-by-line (column-by-column) DSM, the expected va
uesE(�i;j) remain close togi;j for all (i; j) for a wide va-
riety of inputs, which explains the latter finding by Knox
Alas, DSM is not a good halftoning algorithm. Extendin
the approach of Knox [17], I measured EE in halftone
N � N vertical and horizontal grayscale steps for diffe
ent halftoning algorithms. Intensity distortion per pixe
was computed for the columns of the halftone vertical st
images and the lines of the halftone horizontal step im
ages. (Only the steps with the intensity values symm
ric with respect to1=2 were studied.) The measuremen
showed that SACDH does not enhance the edges of sy
metric grayscale steps. It is straightforward to add re
tively isotropic EE to any digital halftoning algorithm. The
details can be found in my technical report [15].

4. Conclusions

A new class of digital halftoning algorithms, anti-correlat
on digital halftoning (ACDH), was introduced. Its repre
sentative, serpentine ACDH, causes fewer correlated a
facts and less contouring than the benchmark algorithm
Unlike some of those algorithms, SACDH does not e
hance edges or cause significant transient boundary effe
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Figure 1: Portrait of Anya Pogosyants, 300 dpi.
a) Ordered dither with a recursive tesselation matrix.
b) Ordered dither with a blue noise mask (void-and-cluster).
c) Three-weight serpentine error diffusion.
d) Error diffusion combined with pulse-density modulation.
e) The iterative convolution algorithm.
f) Serpentine anti-correlation digital halftoning.
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Figure 2: Gray scale ramp, 300 dpi.
a) Ordered dither with a recursive tesselation matrix.
b) Ordered dither with a blue noise mask (void-and-cluster).
c) Three-weight serpentine error diffusion.
d) Error diffusion combined with pulse-density modulation.
e) The iterative convolution algorithm.
f) Serpentine anti-correlation digital halftoning.
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